GFRP retrofitting effect on the dynamic characteristics of model steel structure


Tuhta S.

STEEL AND COMPOSITE STRUCTURES, cilt.28, sa.2, ss.223-231, 2018 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 28 Sayı: 2
  • Basım Tarihi: 2018
  • Doi Numarası: 10.12989/scs.2018.28.2.223
  • Dergi Adı: STEEL AND COMPOSITE STRUCTURES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.223-231
  • Anahtar Kelimeler: experimental modal analysis, GFRP, steel structure, EFDD, shake table, EIGENSYSTEM REALIZATION-ALGORITHM, FUNDAMENTAL 2-STAGE FORMULATION, BAYESIAN SYSTEM-IDENTIFICATION, OPERATIONAL MODAL-ANALYSIS, PART I, BEHAVIOR, BRIDGE, REPAIR, SHEAR, FRP
  • Ondokuz Mayıs Üniversitesi Adresli: Evet

Özet

Nowadays, there are a great number of various structures that have been retrofitted by using different FRP Composites. Due to this, more researches need to be conducted to know more the characteristics of these structures, not only that but also a comparison among them before and after the retrofitting is needed. In this research, a model steel structure is tested using a bench-scale earthquake simulator on the shake table, using recorded micro tremor data, in order to get the dynamic behaviors. Columns of the model steel structure are then retrofitted by using GFRP composite, and then tested on the Quanser shake table by using the recorded micro tremor data. At this stage, it is needed to evaluate the dynamic behaviors of the retrofitted model steel structure. Various types of methods of OMA, such as EFDD, SSI, etc. are used to take action in the ambient responses. Having a purpose to learn more about the effects of GFRP composite, experimental model analysis of both types (retrofitted and no-retrofitted models) is conducted to evaluate their dynamic behaviors. There is a provision of ambient excitation to the shake table by using recorded micro tremor ambient vibration data on ground level. Furthermore, the Enhanced Frequency Domain Decomposition is used through output-only modal identification. At the end of this study, moderate correlation is obtained between mode shapes, periods and damping ratios. The aim of this research is to show and determine the effects of GFRP Composite implementation on structural responses of the model steel structure, in terms of changing its dynamical behaviors. The frequencies for model steel structure and the retrofitted model steel structure are shown to be 33.916% in average difference. Finally, it is shown that, in order to evaluate the period and rigidity of retrofitted structures, OMA might be used.