Asymptotic behaviour of eigenvalues for the discontinuous boundary-value problem with functional-transmission conditions


Mukhtarov O., Kandemir M.

Acta Mathematica Scientia, cilt.22, sa.3, ss.335-345, 2002 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 22 Sayı: 3
  • Basım Tarihi: 2002
  • Doi Numarası: 10.1016/s0252-9602(17)30303-x
  • Dergi Adı: Acta Mathematica Scientia
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.335-345
  • Anahtar Kelimeler: Asymptotic behaviour of eigenvalues, Boundary-value problems, Discontinuous coefficients, Functional-conditions
  • Ondokuz Mayıs Üniversitesi Adresli: Evet

Özet

In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and abstract linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.