Role of different natural materials in reducing nitrogen loss during industrial sludge composting: Modelling and optimization


Aycan Dümenci N., Aydın Temel F., Turan N. G.

Bioresource Technology, cilt.385, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 385
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.biortech.2023.129464
  • Dergi Adı: Bioresource Technology
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Compendex, EMBASE, Environment Index, Food Science & Technology Abstracts, Geobase, INSPEC, MEDLINE, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Box-Behnken design, Composting, Industrial sludge, Multivariate optimization, Nitrogen loss
  • Ondokuz Mayıs Üniversitesi Adresli: Evet

Özet

In this study, the effects of pumice, expanded perlite, and expanded vermiculite on nitrogen loss were examined for industrial sludge composting using the Box-Behnken experimental design. The independent factors and their levels were selected as amendment type, amendment ratio, and aeration rate, and codded as x1, x2, and x3 at 3 levels (low, center, and high). The statistical significance of independent variables and their interactions were determined at 95% confidence limits by Analysis of Variance. The quadratic polynomial regression equation produced to predict the responses was solved and the optimum values of the variables were predicted by analyzing the three-dimensional response surfaces plots. The optimum conditions for minimum nitrogen loss by the regression model were as pumice of amendment type, 40% of amendment ratio, and 6 L/min of aeration rate. In this study, it was observed that time-consuming and laborious laboratory work can be minimized with the Box-Behnken experimental design.