Multipliers and the relative completion in Lwp(G)


Duyar C., Gürkanh A.

Turkish Journal of Mathematics, cilt.31, sa.2, ss.181-191, 2007 (Scopus) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 31 Sayı: 2
  • Basım Tarihi: 2007
  • Dergi Adı: Turkish Journal of Mathematics
  • Derginin Tarandığı İndeksler: Scopus, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.181-191
  • Anahtar Kelimeler: Essential module, Module homomorphism (or multiplier), Relative completion, Weighted Lp(G) space. 1991 AMS subject classification codes 43
  • Ondokuz Mayıs Üniversitesi Adresli: Evet

Özet

Quek and Yap defined a relative completion A for a linear subspace A of Lp(G), 1 ≤ p < ∞ and proved that there is an isometric isomorphism, between HomL1(G), (L1(G), A) and Ã, where HomL1(G)(L1(G), A) is the space of the module homomorphisms (or multipliers) from L1(G) to A. In the present, we defined a, relative completion A for a linear subspace A of Lw p,(G), where w is a Beurling's weighted function and L wp(G) is the weighted Lp(G) space, ([14]). Also, we proved that there is an algeabric isomorphism and homeomorphism, between HomLw1(G)(Lw1(G), A) and Ã. At the end of this work we gave some applications and examples. © TÜBİTAK.