ATMOSPHERE, cilt.16, sa.4, 2025 (SCI-Expanded, Scopus)
This study investigated the impact of grassland and cropland expansion on carbon (C) and nitrous oxide (N2O) emissions using remote sensing data and machine learning models. The research focused on agricultural land-use changes in South Sumatra from 1992 to 2018, utilizing Landsat satellite imagery and Google Earth Engine (GEE) for spatial and temporal analysis. Machine learning algorithms, including gradient boosting trees (GBT), random forest (RF), support vector machines (SVM), and classification and regression trees (CART), were employed to estimate greenhouse gas emissions based on multiple environmental parameters. These parameters include enhanced vegetation index (EVI), land surface temperature (LST), normalized difference vegetation index (NDVI), albedo, elevation, humidity, population density, precipitation, soil moisture, and wind speed. The results revealed a strong correlation between agricultural expansion and increased C and N2O emissions, with RF and GBT models demonstrating superior predictive accuracy. Specifically, GBT and RF achieved the highest R2 value (0.71, 0.59) and the lowest error metrics in modeling emissions, whereas SVM performed poorly across all cases. The study highlights the effectiveness of machine learning in quantifying emission dynamics and underscores the necessity of sustainable land management strategies to mitigate greenhouse gas emissions. By integrating remote sensing and data-driven methodologies, this research contributes to climate change mitigation policies and precision agriculture strategies aimed at balancing food security and environmental sustainability.