Influence of blast-induced ground motion on dynamic response of masonry minaret of Yörgüç Paşa Mosque


KÖKSAL O., HACIEFENDİOĞLU K., ALPASLAN E., BİRİNCİ F.

Challenge Journal of Structural Mechanics, vol.3, no.1, pp.31-37, 2017 (Peer-Reviewed Journal) identifier

Abstract

This paper focuses on the dynamic response analysis of masonry minaret of Yörgüç Paşa Mosque subjected to artificially generated surface blast-induced ground motion by using a three-dimensional finite element model. The mosque is located in the town of Kavak of Samsun, in Turkey. This study intended to determine the ground motion acceleration values due to blast-induced ground motions (air-induced and direct-in-duced) calculated by a random method. In order to model blast-induced ground mo-tion, firstly, peak acceleration and the time envelope curve function of ground motion acceleration were obtained from the distance of the explosion center and the explo-sion charge weight and then blast-induced acceleration time history were estab-lished by using these factors. Non-stationary random process is presented as an ap-propriate method to be produced by the blast-induced ground motion model. As a representative of blast-induced ground motion, the software named BlastGM (Artifi-cial Generation of Blast-induced Ground Motion) was developed by authors to pre-dict ground motion acceleration values. Artificial acceleration values generated from the software depend on the charge weight and distance from the center of the explo-sion. According to the examination of synthetically generated acceleration values, it can be concluded that the explosions cause significant effective ground movements. In the paper, three-dimensional finite element model of the minaret was designed by ANSYS. Moreover, the maximum stresses and displacements of the minaret were in-vestigated. The results of this study indicate that the masonry minaret has been af-fected substantially by effects of blast-induced ground motion.