Experimental and Theoretical Biological Probing of Schiff Bases as Esterase Inhibitors: Structural, Spectral and Molecular Insights


Creative Commons License

Raza M. A., Mumtaz M. W., Öztürk S., Latif M., Aisha A., Ashraf A., ...More

Molecules, vol.28, no.15, 2023 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 28 Issue: 15
  • Publication Date: 2023
  • Doi Number: 10.3390/molecules28155703
  • Journal Name: Molecules
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Communication Abstracts, Food Science & Technology Abstracts, MEDLINE, Metadex, Veterinary Science Database, Directory of Open Access Journals, Civil Engineering Abstracts
  • Keywords: crystal structure, density functional theory, Hirshfeld surface analysis, molecular docking, Schiff base
  • Ondokuz Mayıs University Affiliated: Yes

Abstract

The present study was designed to evaluate the in vitro and in silico potential of the Schiff bases (Z)-4-ethoxy-N-((5-nitrothiophen-2-yl)methylene)benzenamine (1) and (Z)-2,4-diiodo-6-((2-methyl-3-nitrophenylimino)methyl)phenol (2). These Schiff bases were synthesized according to a reported method using ethanol as a solvent, and each reaction was monitored on a TLC until completion of the reaction. The structures of both compounds were elucidated using spectroscopic techniques such as UV–Vis, FTIR, 1H NMR and 13C NMR. Molecular structure was determined using single-crystal XRD, which revealed that compounds 1 and 2 were monoclinic and triclinic, respectively. Hirshfeld surface analysis (HS) and 2D fingerprint plots were used to determine the intermolecular interactions along the contact contribution in the crystalline molecules. The structures of both compounds were optimized through a hybrid functional method B3LYP using the 6-31G(d,p) basis set, and various structural parameters were studied. The experimental and theoretical parameters (bond angle and bond length) of the compounds were compared with each other and are in close agreement. The in vitro esterase potential of the synthesized compounds was checked using a spectrophotometric model, while in silico molecular docking studies were performed with AutoDock against two enzymes of the esterase family. The docking studies and the in vitro assessment predicted that such molecules could be used as enzyme inhibitors against the tested enzymes: acetylcholine esterase (AChE) and butyrylcholine esterase (BChE).