The regulatory role of Fur-encoding SCLAV_3199 in iron homeostasis in Streptomyces clavuligerus

Abanoz-Seçgin B., Otur Ç., Okay S., Kurt Kızıldoğan A.

Gene, vol.878, 2023 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 878
  • Publication Date: 2023
  • Doi Number: 10.1016/j.gene.2023.147594
  • Journal Name: Gene
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, MEDLINE, Veterinary Science Database
  • Keywords: Fur transcriptional regulator, Iron homeostasis, Siderophore, Streptomyces clavuligerus
  • Ondokuz Mayıs University Affiliated: Yes


Iron homeostasis is strictly regulated by complex cascades connected with secondary metabolism in bacteria. Ferric uptake regulators ('Fur's), siderophores, efflux systems, and two-component signal transduction systems are the leading players in response stimuli. However, these regulatory mechanisms remain to be elucidated in Streptomyces clavuligerus. Our study focused on unraveling a possible role of SCLAV_3199 which encodes a Fur family transcriptional regulator, particularly in iron regulation and at the global level in this species. We deleted the SCLAV_3199 gene in S. clavuligerus and compared gene expression differences with the wild-type strain based on iron availability by RNA-seq. We found a potential regulatory effect of SCLAV_3199 on many transcriptional regulators and transporters. Besides, the genes encoding iron sulfur binding proteins were overexpressed in the mutant in the presence of iron. Notably, catechol (SCLAV_5397), and hydroxamate-type (SCLAV_1952, SCLAV_4680) siderophore-related genes were upregulated in the mutant strain in iron scarcity. Concomitantly, S. clavuligerus Δ3199 produced 1.65 and 1.9 times more catechol and hydroxamate-type siderophores, respectively, than that of the wild type strain under iron depletion. Iron containing chemically defined medium did not favor antibiotic production in S. clavuligerus Δ3199 while fermentation in starch-asparagine medium led to improved cephamycin C (2.23-fold) and clavulanic acid (2.56-fold) production in the mutant compared to the control. However, better tunicamycin yield (2.64-fold) was obtained in trypticase soy broth-grown cultures of S. clavuligerus Δ3199. Our findings demonstrate that the SCLAV_3199 gene plays a significant role in regulating both iron homeostasis and secondary metabolite biosynthesis in S. clavuligerus.