Determination of Regression Models Between Thermal Properties of Soils and Some Physical and Chemical Properties


Creative Commons License

EKBERLİ İ., GÜLSER C., DENGİZ O.

Toprak Su Dergisi, vol.10, no.1, pp.68-77, 2021 (Peer-Reviewed Journal) identifier

  • Publication Type: Article / Article
  • Volume: 10 Issue: 1
  • Publication Date: 2021
  • Doi Number: 10.21657/topraksu.885688
  • Journal Name: Toprak Su Dergisi
  • Journal Indexes: TR DİZİN (ULAKBİM)
  • Page Numbers: pp.68-77
  • Ondokuz Mayıs University Affiliated: Yes

Abstract

The formation of the temperature field in the soil and the realization of heat transfer are related to the change of the thermal properties of the soils. Thermal properties vary depending on climate factors and soil properties. In this study, regression models were created between the thermal properties of soils such as volumetric heat capacity, thermal diffusivity and thermal conductivity coefficients and some physical and chemical soil properties (EC, OM, Clay, Silt, Sand, Db, θ ) that could be determined more easily experimentally. The statistical significance level (p = 0.001) and regression coefficient (R2 = 0.76) of the regression model made between the volumetric heat capacity of soils and the properties of EC, OM, Clay, Silt, Sand and Db were determined to be high. Adding volumetric moisture content (θ ) to independent variables increased the performance of the models (R2 = 0.77-0.99); the statistical significance level (p = 0.000) and the regression coefficient of the regression model including θ, EC, OM, Clay, Silt, Sand, Db properties were found to be very high. The thermal diffusion coefficient of soils and the regression models between EC, OM, Clay, Sand, Silt, Db, θ properties were determined as R2 = 0.76 and 0.79 (p = 0.000 and 0.002). The expression of regression models with polynomials including the square, square root and product of soil properties increased the performance of the models; the model including Clay, θ, Clay2 , θ, √OM , (EC·Db), √Clay , OM, OM2 , Db soil properties showed high level of statistical significance (p = 0.001) and was characterized by a higher regression coefficient (R2 = 0.90). The performance of the regression model between the thermal conductivity coefficient and Clay, Silt, Sand, Db, θ soil properties is high (R2 = 0.71; p = 0.001); the performance of the model among the parameters θ, Sand, Clay, Silt, Db, EC2 , OM2 , Db2 , θ2 , EC, √OM, was determined to be very high (R2 = 0.91; p = 0.012). It seems possible that the regression models obtained can be applied in estimating the thermal properties of soils.
Toprakta sıcaklık alanının oluşumu ve ısı transferinin gerçekleşmesi toprakların ısısal özelliklerinin değişimi ile ilişkili olmaktadır. Isısal özellikler iklim faktörlerine ve toprak özelliklerine bağlı olarak değişmektedir. Bu araştırmada topraklarının hacimsel ısı kapasitesi, ısısal yayınım ve ısı iletkenliği katsayıları gibi ısısal özellikleri ile deneysel olarak daha kolay belirlenebilen bazı fiziksel ve kimyasal toprak özellikleri (EC, OM, Kil, Silt, Kum, HA, θ) arasında regresyon modeller oluşturulmuştur. Toprakların hacimsel ısı kapasitesiyle EC, OM, kil, silt, kum ve HA özellikleri arasında yapılan regresyon modelinin istatistiksel anlamlılık düzeyi (p=0.001) ve regresyon katsayısı (R2 =0.76) yüksek olarak belirlenmiştir. Bağımsız değişkenlere hacimsel nem içeriğinin ( θ ) eklenmesi modellerin performasını (R2 =0.77-0.99) yükseltmiş; θ, EC, OM, Kil, Silt, Kum, HA özelliklerini kapsayan regresyon modelinin istatistiksel anlamlılık düzeyi (p=0.000) ve regresyon katsayısı çok yüksek olarak saptanmıştır. Toprakların ısısal yayınım katsayısı ile EC, OM, Kil, Kum, Silt, HA, θ özellikleri arasındaki regresyon modelleri için R2 =0.76 ve 0.79 (p=0.000 ve 0.002) olarak saptanmıştır. Regresyon modellerinin toprak özelliklerinin karesi, karekökü ve çarpımını kapsayan polinomlarla ifadesi modellerin performansını yükseltmiş; Kil, θ, Kil2 , θ2 , √OM (EC·HA), √Kil , OM, OM2 , HA toprak özelliklerini içeren model yüksek düzeyde istatistiksel anlamlılık (p=0.001) göstermiş ve daha yüksek regresyon katsayısı (R2 =0.90) ile karakterize edilmiştir. Isı iletkenliği katsayı ile Kil, Silt, Kum, HA, θ toprak özellikleri arasındaki regresyon modelinin performansı yüksek (R2 =0.71; p=0.001); θ, Kum, Kil, Silt, HA, EC2 , OM2 , HA2 , θ, EC, √OM, parametreleri arasındaki modelin performansı ise çok yüksek (R2 = 0.91; p= 0.012) olarak belirlenmiştir. Elde edilen regresyon modellerin, toprakların ısısal özelliklerinin tahmin edilmesinde uygulanabilirliği mümkün gözükmektedir.