Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations

Yıldırım K., Yağcı A., Sucu S., Tunç S.

Plant Physiology and Biochemistry, vol.127, pp.256-268, 2018 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 127
  • Publication Date: 2018
  • Doi Number: 10.1016/j.plaphy.2018.03.034
  • Journal Name: Plant Physiology and Biochemistry
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.256-268
  • Keywords: Drought, Grapevine rootstocks, Microarray, Root system architecture
  • Ondokuz Mayıs University Affiliated: No


Roots are the major interface between the plant and various stress factors in the soil environment. Alteration of root system architecture (RSA) (root length, spread, number and length of lateral roots) in response to environmental changes is known to be an important strategy for plant adaptation and productivity. In light of ongoing climate changes and global warming predictions, the breeding of drought-tolerant grapevine cultivars is becoming a crucial factor for developing a sustainable viticulture. Root-trait modeling of grapevine rootstock for drought stress scenarios, together with high-throughput phenotyping and genotyping techniques, may provide a valuable background for breeding studies in viticulture. Here, tree grafted grapevine rootstocks (110R, 5BB and 41B) having differential RSA regulations and drought tolerance were investigated to define their drought dependent root characteristics. Root area, root length, ramification and number of root tips reduced less in 110R grafted grapevines compared to 5BB and 41B grafted ones during drought treatment. Root relative water content as well as total carbohydrate and nitrogen content were found to be much higher in the roots of 110R than it was in the roots of other rootstocks under drought. Microarray-based root transcriptome profiling was also conducted on the roots of these rootstocks to identify their gene regulation network behind drought-dependent RSA alterations. Transcriptome analysis revealed totally 2795, 1196 and 1612 differentially expressed transcripts at the severe drought for the roots of 110R, 5BB and 41B, respectively. According to this transcriptomic data, effective root elongation and enlargement performance of 110R were suggested to depend on three transcriptomic regulations. First one is the drought-dependent induction in sugar and protein transporters genes (SWEET and NRT1/PTR) in the roots of 110R to facilitate carbohydrate and nitrogen accumulation. In the roots of the same rootstock, expression increase in osmolyte producer genes revealed another transcriptomic regulation enabling effective root osmotic adjustment under drought stress. The third mechanism was linked to root suberization with upregulation of transcripts functional in wax producing enzymes (Caffeic acid 3-O-methyltransferase, Eceriferum3, 3-ketoacyl-CoAsynthase). These three transcriptomic regulations were suggested to provide essential energy and water preservation to the roots of 110R for its effective RSA regulation under drought. This phenotypic and genotypic knowledge could be used to develop root-dependent drought tolerant grapevines in breeding programs and could facilitate elucidation of genetic regulations behind RSA alteration in other plants.