Toxic effects of copper sulfate on the brains of term Hubbard broiler chicks: A stereological and biochemical study


Oǧuz E., Enli Y., Tufan A., Turgut G.

Biotechnic and Histochemistry, cilt.89, sa.1, ss.23-28, 2014 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 89 Sayı: 1
  • Basım Tarihi: 2014
  • Doi Numarası: 10.3109/10520295.2013.803601
  • Dergi Adı: Biotechnic and Histochemistry
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.23-28
  • Anahtar Kelimeler: Cavalieri, Chick brain, Copper sulfate, Development, Gluthatione, Malondialdehyde
  • Ondokuz Mayıs Üniversitesi Adresli: Hayır

Özet

Copper sulfate can cause different pathologies in different organ systems during development. We determined the effects of toxic levels of copper sulfate on brain development in term Hubbard broiler chicks using stereological and biochemical analyses. Hubbard broiler chicken eggs were divided into three groups: controls with no treatment, sham-treated animals and an experimental group. On day 1, 0.1 ml saline was injected into the air chambers of the sham and experimental groups. The experimental group received also 50 μg copper sulfate. At term (day 21), all chick brains were removed and their volumes were determined using the Cavalieri volume estimation. Parallel biochemical analyses were carried out for glutathione and malondialdehyde levels in the brain tissues as indicators of oxidative damage. With copper treatment, the mean brain volume (8079 μm3) was significantly decreased compared to both the control (10075 μm3) and sham (9547 μm3) groups. Copper treatment (143.8 nmol/g tissue) showed significantly decreased malondialdehyde levels compared to the control (293.6 nmol/g tissue) and sham groups (268.8 nmol/g tissue). Copper treatment (404.5 nmol/g tissue) showed significantly increased malondialdehyde levels compared to the control (158.6 nmol/g tissue) and sham (142.8 nmol/g tissue) groups. The morphological and biochemical parameters we measured demonstrated that in term Hubbard broiler chicks, toxic levels of copper sulfate cause developmental and oxidative brain damage. © 2013 The Biological Stain Commission.