Novel Binary Blended Hydrogel Films (Chitosan-Vanillin Schiff Base/Locust Bean Gum and Fe(III), Cu(II) & Zn(II) Complexes): Synthesis, Characterization, Conductivity, and Antibacterial Activity

Matar G. H., Kaymazlar E., Andaç M., Andaç Ö.

JOURNAL OF POLYMERS AND THE ENVIRONMENT, vol.31, no.8, pp.3509-3521, 2023 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 31 Issue: 8
  • Publication Date: 2023
  • Doi Number: 10.1007/s10924-023-02822-0
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, PASCAL, Aerospace Database, BIOSIS, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Environment Index, Geobase, Greenfile, Metadex, Pollution Abstracts, Civil Engineering Abstracts
  • Page Numbers: pp.3509-3521
  • Keywords: Hydrogel, Locust bean gum, Chitosan, Vanillin, Schiff base, METAL-IONS, BASE, DESIGN
  • Ondokuz Mayıs University Affiliated: Yes


Biopolymeric Schiff bases of chitosan and metal-based hydrogels have recently gained much attraction in biological applications. Herein, we successfully synthesized a novel binary blended hydrogel film [vanillin crosslinked chitosan (Cs)/locust bean gum (LBG)] and then synthesized its complexes with Fe(III), Zn(II) & Cu(II) metal ions by solution casting method. The synthesis of Schiff base and its metal complexes was confirmed by UV-Vis spectroscopy, FTIR, and XRD. The interactions between the polymeric chains, thermal stability, surface morphology, and the presence of the metal ions in the films were examined by FTIR, TGA, SEM, and EDX. The synthesized hydrogels were evaluated for their mechanical strength and swelling behaviors. Fe(III), Zn(II) and Cu(II) metal ions in the synthesized hydrogel films endowed conductive properties to the hydrogel. The antibacterial tests indicated that all hydrogels and their metal complexes have potent antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa bacteria strains. Finally, these innovative hydrogel films can be promising candidates for biomedical applications and soft electronics.