DISCRETE DYNAMICS IN NATURE AND SOCIETY, vol.2024, 2024 (SCI-Expanded)
The discussion models the IRI-2012 TEC map over a moderate geomagnetic storm period (5 days) in February 2015 and compares the yield of the models. The models are constructed with the help of cubic Bezier curves and machine learning. In a sense, the comparison of a classical and mechanical approach with a modern and computer-based one is a considerable experience for the paper. The parametric curve approach governs models of piecewise continuous Bezier cubics, while the models employ only the TEC map. The design is separated into curve components at every five-hour curvature point, and each component is handled independently. Instead of the traditional least squares method for finding control points of cubics, it utilizes the mean of every five-hour of the piecewise curves of the TEC data. Accordingly, the prediction error can be controlled at a rate that can compete with the modern network approach. In the network model, 120 hours of the solar wind parameters and the TEC map of the storm are processed. The reliability of the network model is assessed by the (R) correlation coefficient and mean square error. In modeling the TEC map with the classical approach, the mean absolute error is 0.0901% and the correlation coefficient (R) score is 99.9%. The R score of the network model is 99.6%, and the mean square error is 0.71958 (TECU) (at epoch 47). The results agree with the literature.