A novel <i>Lactiplantibacillus plantarum</i> strain: probiotic properties and optimization of the growth conditions by response surface methodology


Creative Commons License

Gokmen G. G., Sariyildiz S., Cholakov R., Nalbantsoy A., Baler B., Aslan E., ...More

WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, vol.40, no.2, 2024 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 40 Issue: 2
  • Publication Date: 2024
  • Doi Number: 10.1007/s11274-023-03862-3
  • Journal Name: WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, ABI/INFORM, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Compendex, Environment Index, Food Science & Technology Abstracts, MEDLINE, Veterinary Science Database
  • Ondokuz Mayıs University Affiliated: Yes

Abstract

The objective of this study is to explore the probiotic properties and optimal growth conditions of Lactiplantibacillus plantarum BG24. L. plantarum BG24 exhibited a remarkable ability to utilize lactose, and to grow under acidic conditions and in the presence of high levels of bile salts. The strain showed the highest antibacterial activity against L. monocytogenes Scott A (zone of inhibition: 26 mm). L. plantarum BG24 was found to be resistant to 8 of the tested 19 antibiotics using the disc diffusion method.and its multiple antibiotic resistance (MAR) index was calculated as 0.421. The adhesion rate to human intestinal epithelial Caco-2 cells was determined as 37.51%. The enzyme profile of L. plantarum BG24 was investigated using API ZYM test kit and the highest enzymatic activities were found for Leucine arylamidase, beta-glucosidase, Valine arylamidase, beta-galactosidase and N-acetyl-beta-glucosaminidase. L. plantarum BG24 strain showed higher microbial growth under static conditions (6.60 OD600) compared to 100 rpm (5.73 OD600) and 200 rpm (5.02 OD600) shaking speed due to its facultative anaerobic characteristic. However, different inoculation rates and glucose addition did not make a statistically significant difference on biomass formation (p > 0.05). The specific growth rate of L. plantarum BG24 was 0.416 h(-1), the doubling time was 1.67 h, and the biomass productivity value was 0.14 gL(-1) h(-1) in the original MRS broth (pH 5.7) while higher values were found as 0.483 h(-1), 1.43 h and 0.17 gL(-1) h(-1), respectively, in MRS broth (pH 6.5) medium enriched with 5 g/L yeast extract. The stirred tank bioreactor was used to optimise the growth of BG24 strain. The process variables was optimized at 0.05 vvm of aeration rate, 479 rpm of agitation speed, 3% of inoculation rate and 18 h of incubation time. The maximum biomass (g/L) production was obtained as 3.84 g/L at the optimized conditions.