Fixed Circle Theory for Multivalued Mappings With Bilateral Type Contractions


Kaplan E.

JOURNAL OF MATHEMATICS, cilt.2025, sa.1, 2025 (SCI-Expanded, Scopus) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 2025 Sayı: 1
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1155/jom/1856023
  • Dergi Adı: JOURNAL OF MATHEMATICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Ondokuz Mayıs Üniversitesi Adresli: Evet

Özet

This paper investigates the fixed-circle problem in metric spaces within the framework of multivalued mappings. We introduce three novel classes of bilateral contractions, namely, the Jaggi-type bilateral, Dass-Gupta type I bilateral, and Dass-Gupta type II bilateral multivalued contractions, each specifically formulated to extend the fixed-circle theory to the setting of multivalued mappings. By employing these generalized contractive conditions, we establish several fixed-circle and fixed-disc theorems and further extend our results to encompass integral-type contractions. The theoretical findings are supported by illustrative examples that confirm the applicability and robustness of the proposed approach.