Synthesis, Crystal Structure, and Computational Investigations of 2-(2-(4-Fluorophenyl)-2-oxoethyl)-6-methyl-5-(4-methylbenzyl)pyridazin-3(2<i>H</i>)-one as Antiviral Agent


El Kalai F., Abraham C. S., Kansiz S., Oulmidi A., Muthu S., Prasana J. C., ...Daha Fazla

CRYSTALS, cilt.13, sa.7, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 13 Sayı: 7
  • Basım Tarihi: 2023
  • Doi Numarası: 10.3390/cryst13071098
  • Dergi Adı: CRYSTALS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Applied Science & Technology Source, Chemical Abstracts Core, Communication Abstracts, Computer & Applied Sciences, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Ondokuz Mayıs Üniversitesi Adresli: Evet

Özet

The aim of this work was to scrutinize the physiochemical properties of a new pyridazin-3(2H)-one derivative with potential pharmaceutical effectiveness via density functional theory (DFT) and molecular docking analysis. The compound 2-(2-(4-fluorophenyl)-2-oxoethyl)-6-methyl-5-(4-methylbenzyl)pyridazin-3(2H)-one (FOMMP) was synthesized and characterized by FT-IR, UV-Vis, H-1-NMR, C-13-NMR, ESI-MS, and single-crystal XRD analysis. In addition, the geometrical structure of the molecule was analyzed. Frontier molecular orbital (FMO) analysis showed a low energy gap that suggests the chemical reactivity of the title compound. The electrophilicity index (& omega;) points towards the probable biological activity of FOMMP. The molecular electrostatic potential (MEP) was used to assess the local reactivity properties and suggests that the nitrogen atom sites are electronegative. Computational and experimental UV-spectral analyses were performed to attain the bandgap associated with electronic transitions while the charge transfer length helped us determine that the excitation mode associated with the electronic transitions is long-ranged. Natural hybrid orbital (NHO) and natural bond orbital (NBO) analyses depicted the prominent acceptor-donor interactions in terms of the stabilization energies. Hirshfeld surface analysis was performed to analyze the intermolecular interactions in the crystal structure. In addition, a molecular docking study was executed to evaluate the potential of the protease inhibitors (PIs) against SARS-CoV-2.