EARTH SCIENCES RESEARCH JOURNAL, vol.26, no.4, pp.291-301, 2022 (SCI-Expanded)
This study investigates the mineralogical changes and soil development processes of young soils formed on va-rious bedrocks of volcanic origin under the same land use/land cover and climate conditions. The current study was conducted in Lithic Xerorthent soils formed on tuff, trachybasalt, and trachyandesite bedrock between San-dikli-Suhut districts of Afyonkarahisar. The three soil profiles excavated in the study area were classified in Enti-sols order based on Soil taxonomy. The primary minerals, sanidine and muscovite, and the clay minerals, smec-tite, kaolinite, and illite, were widely determined in three soil profiles which were named Profile I (PI), Profile II (PII), and Profile III (PIII). According to the chemical alteration index (CIA) values, which indicate weathering, the soils formed on the tuff bedrock were slightly weathered (77.04%). The chemical weathering index (CIW) in the soils' surface horizons formed on the trachybasalt and trachyandesite bedrock are classified as non -weathe-ring rocks with 24.43% and 33.88%. Basic cations are found at high levels in the tuff bedrock. The determination of phillipsite, gismondin and calcite minerals is an indication that the mineral content of the bedrock and the bedrocks have a significant effect on soil formation. The relationship between the bedrock and the soil has been revealed. As a result of the study, it was concluded that there were significant differences in their physico-chemical characteristics, weathering rates, and mineralogical properties. However, they were characterized as young soils since they do not contain any subsurface diagnostic horizons on the volcanic bedrock under the same climatic and land use/land cover conditions.