A mathematical study of a tuberculosis model with fractional derivatives


Abboubakar H., Kumar P., Ertürk V. S., Kumar A.

INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, vol.12, no.04, 2021 (ESCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 12 Issue: 04
  • Publication Date: 2021
  • Doi Number: 10.1142/s1793962321500379
  • Journal Name: INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING
  • Journal Indexes: Emerging Sources Citation Index (ESCI), Scopus
  • Keywords: TB model, Caputo-Fabrizio (CF) fractional derivative, asymptotic stability, Predictor-Corrector Method (PCM), generalized Caputo derivative, VACCINES, DYNAMICS
  • Ondokuz Mayıs University Affiliated: Yes

Abstract

Y In this work, we use a Predictor-Corrector method to implement and derive an iterative solution of an existing Tuberculosis (TB) model with two fractional derivatives, namely, Caputo-Fabrizio fractional derivative and the new generalized Caputo fractional derivative. We begin by recalling some existing results such as the basic reproduction number R-0 and the equilibrium points of the model. Then, we study the global asymptotic stability of disease-free equilibrium of the fractional models. We also prove, for each fractional model, the existence and uniqueness of solutions. An iterative solution of the two models is computed using the Predictor-Corrector method. Using realistic parameter values, we perform numerical simulations for different values of the fractional order. Simulation results permit to conclude that the new generalized Caputo fractional derivative provides a more realistic analysis than the Caputo-Fabrizio fractional derivative and the classical integer-order TB model.