Sampling theory for Sturm-Liouville problem with boundary and transmission conditions containing an eigenparameter


Creative Commons License

Hıra F., Altınışık N.

ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, vol.66, no.4, pp.1737-1749, 2015 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 66 Issue: 4
  • Publication Date: 2015
  • Doi Number: 10.1007/s00033-015-0505-2
  • Journal Name: ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.1737-1749
  • Keywords: Whittaker-Shannon's sampling theory, Kramer's sampling theory, Discontinuous Sturm-Liouville problems, LAGRANGE INTERPOLATION, EIGENFUNCTIONS, EIGENVALUES
  • Ondokuz Mayıs University Affiliated: Yes

Abstract

In this paper, we derive the sampling theorem associated with a Sturm-Liouville problem which has two points of discontinuity and contains an eigenparameter in a boundary condition and also two transmission conditions. We establish briefly spectral properties of the problem, and then, we prove the sampling theorem associated with the problem.