On the Numerical Solution of Hyperbolic PDEs with Variable Space Operator


Ashyralyev A., Koksal M. E.

NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, cilt.25, sa.5, ss.1086-1099, 2009 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 25 Sayı: 5
  • Basım Tarihi: 2009
  • Doi Numarası: 10.1002/num.20388
  • Dergi Adı: NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1086-1099
  • Ondokuz Mayıs Üniversitesi Adresli: Hayır

Özet

The first and second order of accuracy in time and second order of accuracy in the space variables difference schemes for the numerical solution of the initial-boundary value problem for the multidimensional hyperbolic equation with dependent coefficients are considered. Stability estimates for the solution of these difference schemes and for the first and second order difference derivatives are obtained. Numerical methods are proposed for solving the one-dimensional hyperbolic partial differential equation. (C) 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 25: 1086-1099, 2009